Skip to Content

Category Archives: Garden Blog

Is Your Water Working for You?

Sanitation practices that keep your production environment clean can also improve irrigation quality. Debris from crop planting, residue from equipment and other forms of contamination should be removed before it gets into the water. Contaminants that enter water storage and distribution plumbing leave physical, chemical and biological residues. These residues can make your water unsanitary or “dirty.” Dirty water can impede irrigation, limit the efficacy of treatment and increase the risk of plant pathogens. Treatment control and monitoring water quality can help your water take shape for irrigation.

Water for irrigation should come from a reliable supply that can deliver a sufficient volume into the irrigation system. There, it’s treated, stored, distributed and applied to the crop. Throughout irrigation systems are control points that can be monitored and adjusted to improve water quality. With each treatment, the water should become more conditioned to be in better shape for irrigation. Irrigation should meet hydration and nutrition requirements of the crop, with low risk of disease.

Table 1. Irrigation with tap (potable) water only or tap water with 17-4-7 (N: P: K) at 200 ppm Nitrogen from ammonium nitrate. Applied free chlorine was 2.6 ppm and then measured available free chlorine five seconds later. The free chlorine demand was determined from: Applied – Available = Demand. The last row shows that when additional applied free chlorine of 26 ppm it provided a measured available free chlorine near zero. The free chlorine demand from fertilizer solutions that contain ammonium can be excessive and most of the chlorine was rapidly transformed into combined chlorine. The last row shows an averaged free chlorine demand of 4.3 ppm is typical of nursery and greenhouse irrigation.

About half of the water treatment technologies can provide reliable irrigation. Problems with scale and biofilm are prominent throughout most irrigation systems, resulting in limited flow through the irrigation system and clogged emitters. Crop health is often compromised from elevated alkalinity, salt buildup of waste ions and nutritional deficiencies. Practices that improve plant health and overall sanitation can help to decrease contaminants and improve efficacy of treatments. The treatment technologies available to improve water quality may be limited by poor physical, chemical and biological water quality.

• Chemical control of pH can be used to neutralize water alkalinity, decrease mineral deposits (scale) and increase plant-available nutrients. Nutrient management also relies on the electro-conductivity (EC) of the water. Monitoring these control points can provide information for the appropriate level of control needed for crop nutrition.

• Physical control of debris and particulates may require additional filtration and/or basins to separate suspended and settled solids. Monitoring at these points can identify problems before water distribution becomes impeded in the irrigation system.

• Biological control can be used to mitigate algae, bacteria, fungi and molds that cause biofilm in irrigation systems. Monitoring at points in the irrigation system can identify changes in biological conditions that result with inconsistencies in flow and potential to harbor pathogenic species.

• Disinfestant control can help to mitigate pathogens before they reach the crop. Monitoring the levels of active ingredients (AI) and the sanitizing strength, measured oxidation reduction potential (ORP) can be used determine potential for disinfestation of pathogens.

Disinfestation technologies are often installed as a response to a previous crop disease, suspected to be pathogens. Treatment systems can seem like a form of insurance to the buyers that the problem won’t happen again. There should be caution against a sense of complacency, as all treatment technologies have limitations and considerations for efficacy. There is no “one-size-fits-all” disinfestation technology. This is due to differences in water quality and combinations of treatments.

Figure 1. Ozone was applied at 1.5 ppm with each tank cycle of (x-axis) to water that contained fertilizer iron, chelated with EDDHA at different rates (0, 0.5, 2.5 and 5 ppm). Each fertilizer solution was ozonated until it reached the target oxidation reduction potential (ORP) of 650 to 750 mV (y-axis).

Residual concentration of sanitizing chemicals can be determined by the percent reduction from treatment dose to the residual that remains after time or distance. For example, sodium hypochlorite, the active ingredient in common household bleach, is a widely used to control waterborne pathogens and algae in irrigation water. Once added to water, sodium hypochlorite is converted to hypochlorous acid (HOCl) and the hypochlorite ion (ClO-). The balance is determined by the pH of the water; hypochlorous acid predominates in acidic pH (pH below 7), which is more effective for disinfestation than hypochlorite (pH above 7.5). The amount of hypochlorous acid can be measured as the free chlorine residual (ppm). This represents the chlorine available to disinfest plant pathogens, however, it decreases over time from reactions with organic matter, microorganisms, ammonium and other environmental factors.

Disinfestation monitoring when using chlorine should consider the form of chlorine, concentration and contact time. The concentration of chlorine can be monitored as free chlorine, chlorine dioxide and/or total chlorine. Research indicates control of Pythium and Phytophthora zoospores can be achieved in irrigation water with a measurable free chlorine level of 2.5 ppm at a pH of 6.5. This assumes that there was a minimum contact time of two to 10 minutes with free chlorine.

The disinfestation strength of oxidizers—such as free chlorine, chlorine dioxide and ozone—can also be estimated from the oxidation reduction potential (ORP). An ORP reading over 650 mV is used as guidelines to control human pathogens, such as Escherichia coli and Salmonella. For vegetable and fruit wash in postharvest processing, an ORP of 650 to 700 mV is recommended to kill bacterial contaminants. Effective disinfestation may be limited by a poor physical, chemical and biological water quality.

Similar mortality curves have been shown for Pythium zoospores at ORP of 780 mV provided by the dose of free chlorine at 0.5 to 2 ppm. At this rate with free chlorine, there have been few incidents of phytotoxicity in ornamental crops; therefore, the guideline is a measurable 2.5 ppm free chlorine at discharge points (risers or sprinklers) and pH 6. This will help mitigate zoospores of many Pythium and Phytophthora in irrigation water.

Treatments that we make to the water will interact with each other and can have unintended results. The possible reactions with disinfestation technologies and your fertilizer type, concentration and other water quality factors should be tested. Monitoring programs should be developed to evaluate disinfestation strength when using treatment technologies. Regular monitoring can help to determine effective treatment rates to help control water delivery, quality and pathogen disinfestation with lower risk for crop phytotoxicity, oxidation of equipment or other issues from excessive water treatment.

Develop an irrigation monitoring program to help determine an appropriate treatment technology and rate, based on if the disinfestant demands it from debris, microbes and chemicals. The time and money invested in monitoring will likely be returned from savings on chemical costs and improved plant health. GT

Dr. Dustin Meador is the Executive Director for the Center for Applied Horticultural Research in Vista, California.

Original Article by Dr. Dustin Meador
Originally published in Grower Talks magazine
May 2017
Used with permission.

1 Continue Reading →

Cacti in the Mist

Rhipsalis, epiphytic cacti endemic to tropical jungles in Central and South America, are pendant, with slender cylindrical or flattened branches. In habitat, rhipsalis cascade aerially from the heights of trees or drape from rocky escarpments. In cultivation, rhipsalis excel as spectactular hanging basket plants. As with all epiphytic cacti, rhipsalis prefer diffused light, warmth, humidity and slightly acidic soil composed largley of organic material such as sphagnum moss or peat. A profusion of flowers appears in the spring, usually satiny whites, apricots and rare lavenders are followed by vivid rose or orange "berries." Rhipsalis flowers are delightfully captivating, resembling luminescent stars alight with tiny twinkling lights.

"Tropicalismo" is a design incorporating plants of imposing proportions and boldly polychromatic palettes in exuberant interplay. Rhipsalis, known as "Jungle cacti," can be strategically placed to expand the dimensionality of the Tropicalismo. A Rhipsalis capilliformis, cascading like peridot icicles, can be draped from an escarpment near waterscapes, creating an area of quiet solitude. Other rhipsalis, hangin from the heights of trees, might imbue this tropical fantasia with fiber-optic mobiles. In the oblique light of late afternoon, Rhipsalis pilocarpa is hauntingly evocative, its silken hairs aglow with backlight.

Original Article by Renee O’Connell
Originally published in Garden Compass magazine
May/June 2002
Used with permission.

0 Continue Reading →

Living Wall Art

Spring planting is in full force and preparing your garden bed or patio pots are typically on the top of succulent fanatics to-do list. We have a succulent DIY craft that will fully display your favorite varieties as a living wall mosaic.

0 5 Continue Reading →

Something Sweet This Spring

There is something sweet about spring. It is a season for new beginnings where you may see new life evident by the buds popping on tree branches, green grass, and vivid colors pushing through the soil.

0 0 Continue Reading →

5 Reasons to Love Succulents

Drought tolerant plants are here to stay. Whether you are a gardening beginner or an avid plant collector, succulents add a fresh, innovative perspective to everyday gardening.

0 4 Continue Reading →

Succulent Sunshine – Sedeveria ‘Blue Elf’

Sunny days are hard to come by in February and it is difficult to know when blue skies will appear. Until warmer temperatures come out to play, create your own ray of succulent sunshine with Sedeveria ‘Blue Elf,’ or better known as the “Happy Plant.”

0 3 Continue Reading →

My Valentine Succulent Bouquet

0 5 Continue Reading →

Rainstorm Ready – Preparing Your Garden

While many regions of the United States face freezing temperatures and increased snowfall, the winter weather in Southern California beats to a different drum. Copious rainfall has brought a remarkably wet and active January, reversing several drought-stricken areas. Celebrating the reduction of drought restrictions, we must also keep an eye out for our friendly succulent friends.

0 3 Continue Reading →

Rosy Cheeks Are In – ‘Bashful’™

Have you heard? Rosy cheeks are in.



Now that January is upon us, we pile on warm clothes and burrow into our blankets as the temperatures fall bringing with it a winter chill. Adventuring into the crisp, cool air with our frosty breath and rosy cheeks, the summer tans fade, but the apple-red glow appearing with long days spent outside are associated with natural beauty and good health.

0 3 Continue Reading →

Poinsettias – Our Favorite Holiday Bloom

Commonly known as the traditional Christmas plant, the Poinsettia has deep cultural and historical roots dating back to the sixteenth century. Used for a variety of purposes, ranging from practical to festive, the Poinsettia remains one of the most popular plants sold during the holiday season. Poinsettias provide a beautiful and bright hue for a one-of-a-kind accent piece in your home and garden.

0 0 Continue Reading →